Factors associated with target organ damage regression on the background of perindopril/amlodipin fixed dose combination therapy in hypertensive patients depending on the presence of ischemic heart disease

G.D. Radchenko, L.O. Mushtenko, Yu.M. Sirenko

Abstract


Background. This article deals with an analysis of the results of EPHES trial — Evaluation of influence of fixed dose combination (FDC) Рerindopril/Amlodipine on target organ damage in patients with arterial HypErtension with or without iSchemic heart disease. There were evaluated factors associated with target organ regression in hypertensive patients with and without ischemic heart disease (IHD). Separately we compared significance of peripheral and central blood pressure (BP) for target organ damage. Materials and methods. The analysis included data of 60 patients (aged > 30 years) with hypertension: 1st group included 30 persons without IHD, 2nd group — 30 patients with IHD. All patients on day of randomi­zation were administered FDC perindopril/amlodipine in daily baseline dose 5/5 mg with up-titration to 10/10 mg every two weeks. If target BP was not achieved (> 140/90 mmHg) after 6 weeks, the indapamide 1.5 mg was added. 66.7 and 96.7 % patients of 1st and 2nd groups, respectively, received beta-bloc­kers. All patients underwent: body mass index, office and ambulatory BP measurements, evaluation of pulse wave velocity (PWV) and central systolic BP, augmentation index adjusted to heart rate 75, biochemical analysis, electrocardiography, echocardiography with Doppler, evaluation of ankle-brachial index, intima-media thickness (IMT). The follow-up period was 12 months. Results. It was found that treatment effective in BP decreasing based on FDC led to significant target organ damage regression — improving arterial stiffness and left ventricular diastolic function, decrease in urine albumin level, left ventricular hypertrophy and left atrial size. Lowering aortic PWV was lower in patients without IHD than in patients with IHD — 2.5 ± 0.2 m/s vs 4.4 ± 0.5 m/s (p < 0.005). In spite of equal decreasing of left ventricular mass indices in both groups, improvement in diastolic function (increasing E/A and redu­cing Е/Е’) was greater in patients with IHD — 64.4 and 54.1 % vs 39.8 and 23.2 % (p < 0.05 for both, respectively). IMTmax decreased significantly only in patients with IHD. Regressions of left ventricular hypertrophy, diastolic dysfunction, renal and aortic damage were associated with FDC influence on aortic BP. This impact was equal in both groups. Decrease in ambulatory systolic BP was associated independently with lowering albuminuria and left ventricular hypertrophy. Only in patients without IHD, reduction of ambulatory systolic BP was associated with improving diastolic function and left atrial size reduction, of ambulatory diastolic BP — with decreasing E/E’. In patients with IHD, older age correlated with less dynamics of aortic PWV, office systolic BP — with E/A, diabetes mellitus — with less influence on albuminuria level. Positive dynamic of IMTmax was associated with lowering aortic and ambulatory systolic BP. Independently from BP and presence of IHD, reduction of aortic PWV was correlated with muscular PWV, albuminuria, E/E’ lowering and left ventricular hypertrophy — with improving of diastolic function, reduction of left atrial size and albuminuria. Conclusions. Thus, assessing common and different factors associated with target organ damage regression depending on IHD could help in choice of antihypertensive therapy and management of patients with arterial hypertension.


Keywords


arterial hypertension; ischemic heart disease; target organs; fixed combination; factors associated with target organ damage regression

References


Радченко Г., Муштенко Л., Торбас О., Кушнір С., Яринкіна О., Поташев С., Сіренко Ю. Оцінка впливу фіксованої комбінації периндоприл/амлодипін на ураження органів-мішеней у пацієнтів з артеріальною гіпертензією (первинні результати дослідження EPHES) // Артеріальна гіпертензія. — 2015. — № 4. — С. 27-41.

Радченко Г., Муштенко Л., Торбас О., Кушнір С., Яринкіна О., Поташев С., Сіренко Ю. Оцінка впливу фіксованої комбінації периндоприл/амлодипін на ураження органів-мішеней у пацієнтів з артеріальною гіпертензією та ішемічною хворобою серця (результати дослідження EPHES) // Артеріальна гіпертензія. — 2016. — № 2. — С. 77-92.

Радченко Г., Муштенко Л., Торбас О., Кушнір С., Яринкіна О., Поташев С., Сіренко Ю. Порівняння впливу фіксованої комбінації периндоприл/амлодипін на ураження органів-мішеней у пацієнтів з артеріальною гіпертензією з ішемічною хворобою серця та без неї (результати дослідження EPHES) // Артеріальна гіпертензія. — 2016. — № 5. — С. 11-25.

Торбас О.О., Радченко Г.Д Порівняння значення офісного, середньодобового та центрального артеріального тиску у формуванні ураження органів-мішеней // Артеріальна гіпертензія. — 2014. — № 3. — С. 49-53.

Радченко Г.Д., Торбас О.О., Сіренко Ю.М. Клінічне значення тиску, виміряного різними способами, у пацієнтів з артеріальною гіпертензією // Артеріальна гіпертензія. — 2014. — № 5. — С. 41-48.

Дисліпідемії: діагностика, профілактика та лікування: Методичні рекомендації Асоціації кардіологів України. — К., 2011. — 49 с.

White W. Blood pressure monitoring in Cardiovascular Medicine and Therapeutics. — N. Jersy: Humana Press, 2001. — 308 р.

Levey A., Stevens L., Schmid C. et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate // Ann. Intern. Med. — 2009. — 150(9). — 604-612.

Stein J., Korcarz C., Hurst R. et al. American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography carotid intima-media thickness task force endorsed by the society of vascular medicine // J. Am. Society Echoc. — 2008. — 21(2). — 93-111. doi: 10.1016/j.echo.2007.11.011.

Foppa M., Duncan B., Rohde L. Echocardiography-based left ventricular mass estimation. How should we define hypertrophy? // Cardiovasc. Ultrasound. — 2005. — 3. — 17. doi:10.1186/1476-7120-3-17.

2013 ESH/ESC Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) // Journal of Hypertension. — 2013. — 31. — 1281-1357. doi: 10.1097/01.hjh.0000431740.32696.cc.

McEniery C., Yasmin, McDonnell B. et al. on behalf of the ACCT Investigators. Central pressure: variability and impact of cardiovascular risk factors. The anglo-cardiff collaborative trial II // Hypertension. — 2008. — 51. — 1476-1482. doi: 10.1161/HYPERTENSIONAHA.107.105445.

Roman M., Devereux R., Kizer J. et al. High Central Pulse Pressure Is Independently Associated With Adverse Cardiovascular Outcome The Strong Heart Study // J. Am. Coll. Car­diol. — 2009. — 54. — 1730-173. doi: 10.1016/j.jacc.2009.05.070.

The CAFE Investigators, for the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) Investigators CAFE Steering Committee and Writing Committee. Differential Impact of Blood Pressure-Lowering Drugs on Central Aortic Pressure and Clinical Outcomes Principal Results of the Conduit Artery Function Evaluation (CAFE) Study // Circulation. — 2006. — 113. — 1213-1225. doi: 10.1161/CIRCULATIONAHA.105.595496.

Gosse Ph., Sheridan D., Zannad F. et al. on behalf of the LIVE investigators. Regression of left ventricular hypertrophy in hypertensive patients treated with indapamide SR 1.5 mg versus enalapril 20 mg: the LIVE study // Journal of Hypertension. — 2000. — 18. — 1465-1475.

Mogensen C.E., Viberti G., Halimi S. et al. Effect of low-dose perindopril/indapamide on albuminuria in diabetes: prete­rax in albuminuria regression: PREMIER // Hypertension. — 2003. — 41(5). — P.1063-1071. https://doi.org/10.1161/01.HYP.0000064943.51878.58.

Viberti G., Wheeldon N.M.; MicroAlbuminuria Reduction With VALsartan (MARVAL) Study Investigators. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect // Circulation. — 2002. — 106(6). — 672-678. https://doi.org/10.1161/01.CIR.0000024416.33113.0A.

Rogers W., Hu Y., Coast D., Vido D., Kramer C., ­Pyeritz R., Reichek N. Age-associated changes in regional aortic pulse wave velocity // Journal of the American College of Cardiology. — 2001. — 38. — 1123-1129. doi: 10.1016/S0735-1097(01)01504-2.

Diaz A., Galli C., Tringler M., Ramirez A., Fischer E. Reference Values of Pulse Wave Velocity in Healthy People from an Urban and Rural Argentinean Population // International Journal of Hypertension. — 2014. — 2014. — 1-7. http://dx.doi.org/10.1155/2014/653239.

Cuspidi C., Meani S., Sala C., Valerio C., Negri F., Mancia G. Age related prevalence of severe left ventricular hypertrophy in essential hypertension: echocardiographic findings from the ETODH study // Blood press. — 2012. — 21(3). — 139-145. doi: 10.3109/08037051.2012.668662.

Cheng S., Fernandes V.R.S., Bluemke D.A., McClelland R.L., Kronmal R.A., Lima J.A.C. Age-Related Left Ventricular Remodeling and Associated Risk for Cardiovascular Outcomes. The Multi-Ethnic Study of Atherosclerosis // Circulation: Cardiovascular Imaging. — 2009. — 2. — 191-198. https://doi.org/10.1161/ CIRCIMAGING.108.819938.

Simonson E., Nakagawa K. Effect of Age on Pulse Wave Velocity and “Aortic Ejection Time” in Healthy Men and in Men with Coronary Artery Disease // Circulation. — 1960. — Vol. XXII. — 126-129. doi: 10.1161/01.CIR.22.1.126.

McEniery C., Yasmin, Hall I., Qasem A., Wilkinson I., Cockcroft J. Normal Vascular Aging: Differential Effects on Wave Reflection and Aortic Pulse Wave Velocity: The Anglo-Cardiff Collaborative Trial (ACCT) // Journal of the American College of Cardiology. — 2005. — Vol. 46. — P. 1753-1760. http://dx.doi.org/10.1016/j.jacc.2005.07.037.

Olivetti G., Giordano G., Corradi D., Melissari M., Lagrasta C., Gambert S.R., Anversa P. Gender differences and aging: effects on the human heart // J. Am. Coll. Cardiol. — 1995. — 26. — 1068-1079. http://dx.doi.org/10.1016/0735-1097(95)00282-8.

Olivetti G., Melissari M., Capasso J.M., Anversa P. Cardiomyopathy of the aging human heart: myocyte loss and reactive cellular hypertrophy // Circ. Res. — 1991. — 68. — 1560-1568. https://doi.org/10.1161/01.RES.68.6.1560.

Anversa P., Hiler B., Ricci R., Guideri G., Olivetti G. Myocyte cell loss and myocyte hypertrophy in the aging rat heart // J. Am. Coll. Cardiol. — 1986. — 8. — 1441–1448. http://dx.doi.org/10.1016/S0735-1097(86)80321-7.

Anversa P., Palackal T., Sonnenblick E.H., Olivetti G., Meggs L.G., Capasso J.M. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart // Circ. Res. — 1990. — 67. — 871-885. https://doi.org/10.1161/01.RES.67.4.871.

Lewis E.J., Hunsicker L.G., Bain R.P. et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy // N. Engl. J. Med. — 1993. — 329. — 1456-62. DOI: 10.1056/NEJM199311113292004.

Ostergren J., Poulter N.R., Sever P.S., Dahlöf B., Wedel H., Beevers G., Caulfield M., Collins R., Kjeldsen S.E., Kristinsson A., McInnes G.T., Mehlsen J., Nieminen M., O’Brien E.; ASCOT investigators. The Anglo-Scandinavian Cardiac Outcomes Trial: blood pressure-lowering limb: effects in patients with type II diabetes // J. Hypertens. — 2008. — Vol. 26(11). — P. 2103-2111. doi: 10.1097/HJH.0b013e328310e0d9.

Satchell S., Tooke J. What is the mechanism of microalbuminuria in diabetes: a role for the glomerular endothelium? // Diabetologia. — 2008 May. — 51(5). — 714-725. doi: 10.1007/s00125-008-0961-8.

Dong I Shin, Ki-Bae Seung, Hye Eun Yoon, Byung-Hee Hwang et al. Microalbuminuria is Independently Associated with Arterial Stiffness and Vascular Inflammation but not with Carotid Intima-Media Thickness in Patients with Newly Diagnosed Type 2 Diabetes or Essential Hypertension // J. Korean Med. Sci. — 2013. — 28. — 252-260. doi: 10.3346/jkms.2013.28.2.252.

Kim B.J., Lee H.A., Kim N.H. et al. The association of albuminuria, arterial stiffness, and blood pressure status in nondiabetic, nonhypertensive individuals // J. Hypertens. — 2011. — 29(11). — 2091-2098. doi: 10.1097/HJH.0b013e32834b5627.

Bouchi R., Babazono T., Mugishima М. et al. Arterial Stiffness Is Associated With Incident Albuminuria and Decreased Glomerular Filtration Rate in Type 2 // Diabetic Patients Diabetes Care. — 2011. — 34. — 2570-2575. https://doi.org/10.2337/dc11-1020.

Van den Meiracker A.H., Mattace-Raso F.U.S. Large artery stiffness and microalbuminuria: a causal relationship? // Journal of Hypertension. — 2009. — 27. — 1355-1357.

dx.doi.org/10.1097/HJH.0b013e32832d2149, hdl.handle.net/ 1765/ 27133.

Agoşton-Coldea L., Mocan T., Bobar C. Arterial stiffness and left ventricular diastolic function in the patients with hypertension // Rom. J. Intern. Med. — 2008. — 46(4). — 313-321.

Jaroch J., Łoboz Grudzień K., Bociąga Z. et al. The relationship of carotid arterial stiffness to left ventricular diastolic dysfunction in untreated hypertension // Kardiol. Pol. — 2012. — 70(3). — 223-231.

London G.M., Pannier B., Guerin A.P. et al. Cardiac hypertrophy, aortic compliance, peripheral resistance, and wave reflection in end-stage renal disease: comparative effects of ACE inhibition and calcium channel blockade // Circulation. — 1994. — 90. — 2786-2796. https://doi.org/10.1161/01.CIR.90.6.2786.

Mahmud A., Feely J. Reduction in arterial stiffness with angiotensin II antagonist is comparable with and additive to ACE inhibition // Am. J. Hypertens. — 2002. — 15. — 321-325. http://dx.doi.org/10.1016/S0895-7061(01)02313-5.

Pannier B.M., Guerin A.P., Marchais S.J., London G.M. Different aortic reflection wave responses following long-term angiotensin-converting enzyme inhibition and beta-blocker in essential hypertension // Clin. Exp. Pharmacol. Physiol. — 2001. — 28. — 1074-1077. doi: 10.1046/j.1440-1681.2001.03570.x.

Tomiyama H., Kimura Y., Sakuma Y. et al. Effects of an ACE inhibitor and a calcium channel blocker on cardiovascular autonomic nervous system and carotid distensibility in patients with mild to moderate hypertension // Am. J. Hypertens. — 1998. — 11. — 682-689. doi: https://doi.org/10.1016/S0895-7061(98)00049-1.

Safar M. Macro- and Microcirculation in Hypertension. — London: Lippincott Williams & Wilkins, 2005. — 151 p.

Balkestein E.J., Staessen J.A., Wang J.G. et al. Carotid and femoral artery stiffness in relation to three candidate genes in a white population // Hypertension. — 2001. — 38. — 1190-1197. https://doi.org/10.1161/hy1101.095992.

Компендіум. Лікарські засоби / Під редакцією акад. В.М. Коваленка та проф. А.П. Вікторова. — К.: Моріон, 2010. — С. Л-219.




DOI: https://doi.org/10.22141/2224-1485.2.52.2017.101294

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 HYPERTENSION

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2017

 

 Яндекс.МетрикаSeo анализ сайта Рейтинг@Mail.ru