Role of microRNA in the development of arterial hypertension

S.M. Koval, K.O. Yushko, I.O. Snihurska, T.H. Starchenko, D.K. Miloslavsky, M.Yu. Penkova

Abstract


The article presents the analysis of the results of international and national studies on the pathogenetic role of microRNA in the development of hypertension and its complications. It has been shown microRNA interactions with the blood pressure regulation mechanisms, the renin-angiotensin system components and the target organ damage processes. The possibility of applying the microRNA as a potentially new class of drugs for the treatment of hypertension and its complications has been discussed.


Keywords


microRNA; hypertension; left ventricle hypertrophy; mimic; antagomir; review

References


Sirenko YN. Gipertonicheskaja bolezn' i arterial'nye gipertenzii [Hypertensive disease and arterial hypertensions]. Donetsk: Izdatel' Zaslavskij A.Ju.; 2011. 352 p. (in Russian).

Kovalenko VM, Kuchmenko OB, Mkhitarian LS. The role of single nucleotide polymorphisms and microRNA in pathogenesis of cardiovascular diseases (review of literature). Journal of NAMS of Ukraine. 2014;20(1):62-73.

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97.

Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15-20. DOI: 10.1016/j.cell.2004.12.035.

Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92-105. doi: 10.1101/gr.082701.108.

He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522-31. DOI: 10.1038/nrg1379.

Lawrie CH, Gal S, Dunlop HM, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672-5. doi: 10.1111/j.1365-2141.2008.07077.x.

Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513-8. doi: 10.1073/pnas.0804549105.

Karolina DS, Tavintharan S, Armugam A, et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab. 2012;97(12):E2271-6. doi: 10.1210/jc.2012-1996.

Weber JA1, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733-41. doi: 10.1373/clinchem.2010.147405.

Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110(3):483-95. doi: 10.1161/CIRCRESAHA.111.247452.

Li S1, Zhu J, Zhang W, et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation. 2011;124(2):175-84. doi: 10.1161/CIRCULATIONAHA.110.012237.

Yang Q, Jia C, Wang P, et al. MicroRNA-505 identified from patients with essential hypertension impairs endothelial cell migration and tube formation. Int J Cardiol. 2014;177(3):925-34. doi: 10.1016/j.ijcard.2014.09.204.

Karolina DS, Tavintharan S, Armugam A, et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab. 2012;97(12):E2271-6. doi: 10.1210/jc.2012-1996.

Gildea JJ, Carlson JM, Schoeffel CD, Carey RM, Felder RA. Urinary exosome miRNome analysis and its applications to salt sensitivity of blood pressure. Clin Biochem. 2013;46(12):1131-4. doi: 10.1016/j.clinbiochem.2013.05.052.

Cengiz M, Karatas OF, Koparir E, et al. Differential expression of hypertension-associated microRNAs in the plasma of patients with white coat hypertension. Medicine (Baltimore). 2015;94(13):e693. doi: 10.1097/MD.0000000000000693.

Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: novel targets in essential hypertension. J Hum Hypertens. 2014;28(8):510-6. doi: 10.1038/jhh.2013.117.

Kontaraki JE, Marketou ME, Zacharis EA, Parthenakis FI, Vardas PE. MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens. 2014;8(6):368-75. doi: 10.1016/j.jash.2014.03.324.

Mandraffino G, Imbalzano E, Sardo MA, et al. Circulating progenitor cells in hypertensive patients with different degrees of cardiovascular involvement. J Hum Hypertens. 2014;28(9):543-50. doi: 10.1038/jhh.2014.7.

Marques FZ, Campain AE, Tomaszewski M, et al. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension. 2011;58(6):1093-8. doi: 10.1161/HYPERTENSIONAHA.111.180729.

Tomaszewski M, Charchar FJ, Lynch MD, et al. Fibroblast growth factor 1 gene and hypertension: from the quantitative trait locus to positional analysis. Circulation. 2007;116(17):1915-24. DOI: 10.1161/CIRCULATIONAHA.107.710293.

Tomaszewski M, Charchar FJ, Nelson CP, et al. Pathway analysis shows association between FGFBP1 and hypertension. J Am Soc Nephrol. 2011;22(5):947-55. doi: 10.1681/ASN.2010080829.

Marques FZ, Romaine SP, Denniff M, et al. Signatures of miR-181a on renal transcriptome and blood pressure. Mol Med. 2015 Aug 24. doi: 10.2119/molmed.2015.00096.

Davern PJ, Nguyen-Huu TP, La Greca L, Abdelkader A, Head GA. Role of the sympathetic nervous system in Schlager genetically hypertensive mice. Hypertension. 2009 Oct;54(4):852-9. doi: 10.1161/HYPERTENSIONAHA.109.136069.

Jackson KL, Marques FZ, Watson AM, et al. A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension. 2013;62(4):775-81. doi: 10.1161/HYPERTENSIONAHA.113.01701.

Sequeira-Lopez ML, Weatherford ET, Borges GR, et al. The microRNA-processing enzyme dicer maintains juxtaglomerular cells. J Am Soc Nephrol. 2010;21(3):460-7. doi: 10.1681/ASN.2009090964.

Xin M, Small EM, Sutherland LB, et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23(18):2166-78. doi: 10.1101/gad.1842409.

Albinsson S, Skoura A, Yu J, DiLorenzo A, Fernández-Hernando C, Offermanns S, Miano JM, Sessa WC. Smooth muscle miRNAs are critical for post-natal regulation of blood pressure and vascular function. PLoS One. 2011;6(4):e18869. doi: 10.1371/journal.pone.0018869.

Fernandes T, Magalhães FC, Roque FR, Phillips MI, Oliveira EM. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16, -21, and -126. Hypertension. 2012;59(2):513-20. doi: 10.1161/HYPERTENSIONAHA.111.185801.

Gu Q, Wang B, Zhang XF, Ma YP, Liu JD, Wang XZ. Contribution of renin-angiotensin system to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Cardiovasc Pathol. 2014;23(5):298-305. doi: 10.1016/j.carpath.2014.05.006.

Nossent AY, Eskildsen TV, Andersen LB,et al.The 14q32 microRNA-487b targets the antiapoptotic insulin receptor substrate 1 in hypertension-induced remodeling of the aorta. Ann Surg. 2013;258(5):743-51; discussion 752-3. doi: 10.1097/SLA.0b013e3182a6aac0.

Ling S, Nanhwan M, Qian J, et al. Modulation of microRNAs in hypertension-induced arterial remodeling through the β1 and β3-adrenoreceptor pathways. J Mol Cell Cardiol. 2013;65:127-36. doi: 10.1016/j.yjmcc.2013.10.003.

Eskildsen TV, Jeppesen PL, Schneider M, et al. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci. 2013;14(6):11190-207. doi: 10.3390/ijms140611190.

Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci (Lond). 2010;119(9):395-405. doi: 10.1042/CS20100003.

Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T, Nakamura M. Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci (Lond). 2010;119(9):395-405. doi: 10.1042/CS20100003.

Ferrario CM, Jessup J, Chappell MC, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605-10. DOI: 10.1161/CIRCULATIONAHA.104.510461.

Zhong JC, Ye JY, Jin HY, et al. Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression. Regul Pept. 2011;166(1-3):90-7. doi: 10.1016/j.regpep.2010.09.005.

Deiuliis J, Mihai G, Zhang J, et al. Renin-sensitive microRNAs correlate with atherosclerosis plaque progression. J Hum Hypertens. 2014;28(4):251-8. doi: 10.1038/jhh.2013.97.

Dickinson BA, Semus HM, Montgomery RL, et al. Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure. Eur J Heart Fail. 2013;15(6):650-9. doi: 10.1093/eurjhf/hft018.

Sánchez-de-la-Torre M, Khalyfa A, Sánchez-de-la-Torre A, et al. Precision Medicine in Patients With Resistant Hypertension and Obstructive Sleep Apnea: Blood Pressure Response to Continuous Positive Airway Pressure Treatment. J Am Coll Cardiol. 2015;66(9):1023-32. doi: 10.1016/j.jacc.2015.06.1315.

van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316(5824):575-9. DOI: 10.1126/science.1139089.

Callis TE, Pandya K, Seok HY, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009;119(9):2772-86. doi: 10.1172/JCI36154.

Nishi H, Ono K, Horie T, et al. MicroRNA-27a regulates beta cardiac myosin heavy chain gene expression by targeting thyroid hormone receptor beta1 in neonatal rat ventricular myocytes. Mol Cell Biol. 2011;31(4):744-55. doi: 10.1128/MCB.00581-10.

van Rooij E, Quiat D, Johnson BA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell. 2009;17(5):662-73. doi: 10.1016/j.devcel.2009.10.013.

Bell ML, Buvoli M, Leinwand LA. Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol Cell Biol. 2010;30(8):1937-45. doi: 10.1128/MCB.01370-09.

Li Q, Song XW, Zou J, et al. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J Cell Sci. 2010;123(Pt 14):2444-52. doi: 10.1242/jcs.067165.

Elia L, Contu R, Quintavalle M, et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation. 2009;120(23):2377-85. doi: 10.1161/CIRCULATIONAHA.109.879429.

Ikeda S, He A, Kong SW, et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol Cell Biol. 2009;29(8):2193-204. doi: 10.1128/MCB.01222-08.

Kumarswamy R, Lyon AR, Volkmann I, et al. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway. Eur Heart J. 2012;33(9):1067-75. doi: 10.1093/eurheartj/ehs043.

Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy.Nat Med. 2007;13(5):613-8. DOI: 10.1038/nm1582.

Matkovich SJ, Wang W, Tu Y, et al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res. 2010;106(1):166-75. doi: 10.1161/CIRCRESAHA.109.202176.

Wang Z, Yue L, White M, Pelletier G, Nattel S. Differential distribution of inward rectifier potassium channel transcripts in human atrium versus ventricle. Circulation. 1998;98(22):2422-8.

Kontaraki JE, Marketou ME, Parthenakis FI, Maragkoudakis S, Zacharis EA, Petousis S, Kochiadakis GE. Hypertrophic and antihypertrophic microRNA levels in peripheral blood mononuclear cells and their relationship to left ventricular hypertrophy in patients with essential hypertension. J Am Soc Hypertens. 2015;9(10):802-10. doi: 10.1016/j.jash.2015.07.013.

Ceylan-Isik AF, Kandadi MR, Xu X, Hua Y, Chicco AJ, Ren J, Nair S. Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol. 2013;63:4-13. doi: 10.1016/j.yjmcc.2013.07.002.

Kochetov AG, Zhirov IV, Masenko VP, Gimadiev RR, Lyang OV, Tereshchenko SN. Prospects of use of microRNAs in the diagnostics and treatment of heart failure. Kardiologicheskij Vestnik. 2014;2:62-67.

Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005;438(7068):685-9.

Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980-4. doi: 10.1038/nature07511.

Thum T, Chau N, Bhat B, Gupta SK, Linsley PS, Bauersachs J, Engelhardt S. Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. J Clin Invest. 2011;121(2):461-2; author reply 462-3. doi: 10.1172/JCI45938.

Montgomery RL, Hullinger TG, Semus HM, et al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation. 2011;124(14):1537-47. doi: 10.1161/CIRCULATIONAHA.111.030932.

Dickinson BA, Semus HM, Montgomery RL, et al. Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure. Eur J Heart Fail. 2013;15(6):650-9. doi: 10.1093/eurjhf/hft018.

Friese RS, Altshuler AE, Zhang K, et al. MicroRNA-22 and promoter motif polymorphisms at the Chga locus in genetic hypertension: functional and therapeutic implications for gene expression and the pathogenesis of hypertension. Hum Mol Genet. 2013;22(18):3624-40. doi: 10.1093/hmg/ddt213.




DOI: https://doi.org/10.22141/2224-1485.5.55.2017.115334

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 HYPERTENSION

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

 Яндекс.МетрикаSeo анализ сайта Рейтинг@Mail.ru