Influence of different classes of antihypertensive drugs on insulin resistance in patients with mild and moderate arterial hypertension

O.L. Rekovets, Yu.M. Sirenko, S.Yu. Savitsky, O.O. Torbas, S.M. Kushnir, G.V. Ponomareva, G.F. Primak

Abstract


Background. The purpose was to reveal the prevalence of metabolic syndrome in patients with hypertension and methods of correction with antihypertensive therapy. Materials and methods. 223 patients with mild to moderate hypertension and metabolic syndrome (MS) were examined according to ATP III criteria, of which 105 (47.1 %) were males and 118 (52.9 %) — females. The average age of patients was 50.29 ± 0.96 years. The average duration of hypertension is 5.01 ± 0.26 years. The average body mass index (BMI) was 32.92 ± 0.38 kg/m2. 70.16 % of the patients had hereditary hypertension complications and 24.19 % — diabetes. Excessive body mass was observed in all patients, including overweight itself in 21.77 % of the subjects, degree I obesity — in 58.06 %, degree II obesity — in 12.90 %, degree III obesity — in 7.26 %. The average levels of office systolic (SBP) and diastolic blood pressure (DBP) amounted to 157.03 ± 0.79 and 92.17 ±
± 0.32 mmHg, respectively. Average heart rate — 75.02 ± 0.69 bpm. Average figures for blood pressure with daily blood pressure monitoring were: for SBP — 135.90 ± 1.13 mmHg, for DBP — 80.38 ± 0.81 mmHg. Average daily heart rate — 71.49 ± ± 0.89 bpm. The study did not include patients with type 1 and type 2 diabetes mellitus, verified symptomatic arterial hypertension, clinical signs of coronary heart disease, heart failure, level of office blood pressure ≥ 180/110 mmHg, decompensated liver disease (alanine aminotransferase, aspartete aminotransferase 3 times above norm), acute or chronic renal insufficiency (glomerular filtration rate < 60 ml/min), myocardial infarction or acute cerebrovascular accident in the past medical history, pregnancy, and lactation. The first control group consisted of 10 apparently healthy individuals. The se-cond control group included 24 patients with mild and moderate arterial hypertension without signs of a metabolic syndrome. The average age of patients was 49.88 ± 1.52 years. The ave-
rage BMI is 25.56 ± ± 0.31 kg/m2. Carbohydrate metabolism was evaluated by oral glucose tolerance test (OGTT) according to the standard method. Normal glucose tolerance (NGT) was determined with glucose level < 6.1 mmol/l and after 2 hours < 7.8 mmol/l. Impaired fasting glucose — at a level ³ 6.1 but < 7.0 mmol/L on an empty stomach, and < 7.8 mmol/l in 2 hours. Impaired glucose tolerance — at the level < 7.0 mmol/l on an empty stomach, and > 7.8 mmol/l but < 11.1 mmol/l in 2 hours. The criteria for the diagnosis of diabetes mellitus were: fasting glucose level ³ 7.0 mmol/l and/or ³ 11.1 mmol/l in 2 hours. The presence of insulin resistance was determined at HOMA level ³ 3.0 c.u. ­Results. The frequency of MS components detection in our study was: 3 components (arterial hypertension and waist circumference > 88 cm in women and 102 cm in men, 2 mandatory criteria and any other of the 5 criteria) — 100 %, 4 components — 61 %, 5 components — 22 % of patients. At the first stage of the study, we compared the groups of patients with hypertension and clinical manifestations of MS and with hypertension without MS. Patients with hypertension and clinical manifestations of MS were significantly more likely to have impaired fasting glucose, impaired glucose intolerance, and HOMA was also higher as compared to the group of hypertensive patients without MS. They were more likely to have normal glucose tolerance and no cases of diabetes. In patients with hypertension and MS, hyperinsulinemia was more pronounced both on an empty stomach and at all stages of OGTT. Thus, insulin levels above 11 μU/ml were detected in 35.5 % of patients with hypertension and MS and only in 12.5 % of hypertensive patients without MS (p < 0.05). Insulin resistance by the HOMA > 3 was found in 29 % of patients with mild to moderate arterial hypertension and clinical signs of metabolic syndrome without diabetes mellitus. Thus, in our study, impaired fasting glucose, impaired glucose intolerance and newly diagnosed diabetes mellitus in patients with hypertension and MS were found in 51.61 % of cases that is much more often than in patients without MS (16.66 %) (p = 0.002), which may indicate an additional risk of developing cardiovascular diseases. After 6 months, blood pressure decreased equally in all groups of patients. The study of the drugs’ effect on glucose level showed that at the background of atenolol, an increase in glucose level by 5.61 % (p < 0.001) was observed in 6 months. According to OGTT, 6 (18.7 %) cases of diabetes mellitus when receiving atenolol were detected. The area under the glucose curve increased by 9.75 % (p < 0.001). The administration of fosinopril was accompanied by the opposite dynamics: a decrease in glucose level by 1.44 % (p = 0.003), in area under the glucose curve — by 5.63 % (p < 0.001). In the fosinopril group, there were 2 patients who were diagnosed diabetes mellitus during the observation period (6.3 %). On the background of telmisartan treatment, there was the most pronounced and significant reduction in glucose level, both fasting by 2.91 % (p < 0.001), and the area under the glucose curve by 7.67 % (p < 0.001). Following carvedilol administration, fasting glucose levels did not change significantly, and during bisoprolol treatment — decreased by 9 %, from 5.5 ± 0.1 to 5.0 ± 0.1 (p < 0.001), under the influence of nebivolol — decreased by 7.4 %, from 5.4 ± 0.1 to 5.0 ± 0.1 (p < 0.001). In the carvedilol group, there were 2 patients who had diabetes mellitus during the observation period (6.3 %). In the bisoprolol group, one case of diabetes mellitus (3.2 %) was detected during the follow-up. That is, therapy with telmisartan and nebivolol had the most positive effect on the glucose level. The study of the effect of drugs on the insulin level showed that the use of atenolol contributed to a significant increase in insulin levels, especially on an empty stomach — by 65.43 % (p < 0.001), the area under the insulin curve increased by 19.53 % (p < 0.001). Administration of fosinopril was accompanied by a decrease in insulin levels by 1.44 % (p = 0.003), the area under the insulin curve — by 21.05 % (p < 0.001). On the background of telmisartan treatment, the most pronounced and reliable decrease in insulin levels was observed. Thus, fasting insulin levels decreased by 28.19 % (p < 0.001), the area under the insulin curve — by 30.09 % (p < 0.001), which was significantly more significant compared to fosinopril group
(p < 0.05). Carvedilol therapy contributed to 22.8 % (p < 0.001) decrease in fasting insulin levels; when using bisoprolol, fasting insulin decreased by 10.7 % (p < 0.001), when using nebivolol — by 16 % (p < 0.001). That is, telmisartan treatment had the most pronounced positive effect on the level of insulin. Evaluating the effect of drugs on the state of insulin resistance, it was found that atenolol, in contrast to fosinopril and telmisartan, significantly impaired IR, which was manifested in an increase in HOMA level by 78.18 %, p < 0.001. At the same time, against the background of fosinopril treatment, IR was improved — the HOMA index decreased by 12.5 % (p < 0.001). However, even more pronounced IR improvement was observed during telmisartan treatment, when HOMA level decreased by 31.64 % (p < 0.001). The difference between the telmisartan and fosinopril group is significant (p < 0.05). Therapy with carvedilol contributed to a significant HOMA decrease by 21.7 % (p < 0.001). On the background of treatment with bisoprolol, HOMA decreased by 17.4 % (p < 0.001), in nebivolol group, HOMA reduced by 23 % (p < 0.001). Thus, telmisartan and nebivolol had the highest positive effect on IR. Conclusions. The use of telmisartan and nebivolol as monotherapy can be rational in patients with mild to moderate arterial hypertension and the clinical signs of metabolic syndrome without diabetes with manifestations of insulin resistance.


Keywords


metabolic syndrome; arterial hypertension; insulin resistance

References


Маколкин В.И. Возможно ли применение бета-адреноблокаторов при артериальной гипертонии у больных метаболическим синдромом и сахарным диабетом 2 типа? // Русский медицинский журнал. — 2005. — Т. 13, № 11. —

С. 1169-1172.

Смірнова І.П., Горбась І.М., Кваша О.О. Артеріальна гіпертензія: епідеміологія та статистика // Укр. кардіол. журн. — 1998. — № 6. — С. 3-8.

Целуйко В.И., Чернышов В.А., Малая Л.Т. Метаболический синдром. — Харьков, 2002. — С. 10-16.

Aleman G., Torres N., Tovar A.R. Peroxisome prolifera-tor-activated receptors (PPARs) in obesity and insulin resistance development // Rev. Invest. Clin. — 2004. — Vol. 56. — P. 351-367.

Bakris G. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension // JAMA. — 2004. — Vol. 292. — P. 2227-2236.

Benson S.C., Pershadsingh H.A., Ho C.I. et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPAR-γ-modulating activity // Hypertension. — 2004. — Vol. 43. — P. 1-10.

Bloch M.J., Basile J.N. Analysis of recent papers in hypertension. Telmisartan: an angiotensin II receptor antagonist with selective PPAR-γ activity // The Journal of Clinical Hypertension. — 2004. — Vol. 6. — P. 466-468.

Bonora E., Targher G., Alberiche M. et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity // Diabetes Care. — 2000. — Vol. 23. — P. 57-63.

Bonora, E. et al. Prevalence of insulin resistance in me­tabolic disorders: the Bruneck Study // Diabetes. — 1998. — Vol. 47. — P. 1643-1649.

Celik T., Iyisoy A., Kursaklioglu H. et al. Comparative effects of nebivolol and metoprolol on oxidative stress, insulin resistance, plasma adiponectin and soluble P-selectin levels in hypertensive patients // J. Hypertens. — 2006. — Vol. 24. — P. 591-596.

Clasen R., Schupp M., Foryst-Ludwig A. et al. PPAR-γ-activating angiotensin type I receptor blockers induce adiponectin // Hypertension. — 2005. — Vol. 46. — P. 137.

Dekker J.M., Girman C., Rhodes T. et al. Metabolic Syndrome and 10-year cardiovascular disease risk in the Hoorn study // Circulation. — 2005. — Vol. 112. — P. 666-673.

Derosa G., Cicero A.F.G., Bertone G. et al. Comparison of the effects of telmisartan and nifedipine gastrointestinal therapeutic system on blood preassure control, glucose metabolism, and the lipid profile in patients with 2 diabetes mellitus and mild hypertension: a 12-month, randomized, double-blind study // Clinic. Therapeutics. — 2004. — Vol. 26. — P. 1228-1236.

Derosa G., Ragonesi P.D., Mugellini A. et al. Effects of telmisartan compared with eprosartan on blood pressure control, glucose metabolism and lipid profile in hypertensive, type 2 diabetic patients: a randomized, double-blind, placebo-controlled 12-month study // Hypertension Research. — 2004. — Vol. 27. — P. 457-464.

Doggrell S.A. Telmisartan — killing two birds with one stone // Expert Opinion in Pharmacotherapy. — 2004. — Vol. 5. — P. 2397-2400.

Dominguez L.J. et al. Bisoprolol and captopril effects on insulin receptor kinase activity in essential hypertension // Am. J. Hypertens. — 1997. — Vol. 10. — P. 1349.

DREAM Trial Investigators. Effect ramipril on the incidence of diabetes // Lancet. — 2006. — Vol. 368. — P. 1096-1105.

Fogari R. et al. Beta-blocker effects on plasma lipids du-ring prolonged treatment of hypertensive patients with hypercholesterinemia // J. Cardiovasc. Pharmacol. — 1999. — Vol. 33. — P. 534.

Fogari R., Zoppi A., Lazzari P. et al. Comparative effects of nebivolol and atenolol on blood pressure and insulin sensitivity in hypertensive subjects with type II diabetes // J. Hum. Hypertens. — 1997. — Vol. 11. — P. 753-757.

Ford E.S., Giles W.H., Dietz V.H. Prevalence of the metabolic syndrome among US adults: findings from the Third National Health and Nutrition Examination Survey // JAMA. — 2002. — Vol. 287. — P. 356-359

Fujimoto M., Masuzaki H., Tanaca T. et al. An angiotensin II AT1 receptor antagonist, telmisartan augments glucose uptake and GLUT4 protein expression in 3T3-L1 adipocytes // FEBS Letters. — 2004. — Vol. 576. — P. 492-497.

Garcia M.J., McNamara P.M., Gordon T., Kannell W.B. Morbidity and mortality in diabetics in the Framingham population: sixteen year follow-up study // Diabetes. — 1974. — Vol. 23. — P. 105-111.

Haffner C.A., Horton R.C. et al. A metabolic assessment of the beta-selectivity of bisoprolol // J. Human Hypertens. — 1992. — Vol. 6. — P. 397-400.

Haffner S.M., Kennedy E., Gonzales C., Stem M.P., Miettienen H. A prospective analysis of the HOMA model: the Mexico City Diabetes Study // Diabetes Care. — 1996. — Vol. 19. — P. 1138-1141.

Honjo S., Nichi Y., Wada Y. et al. Possible beneficial effect of telmisartan on glycemic control in diabetic subjects // Diabetes Care. — 2005. — Vol. 28. — P. 498.

Howard B.V., Welty T.K., Fabsitz R.R., Cowan L.D., Oopik A.J., Le N.A., Yeh J., Savage P.J., Lee E.T. Risk factors for co-ronary heart disease in diabetic and nondiabetic Native Americans: the Strong Heart Study // Diabetes. — 1992. — Vol. 41, Suppl. 2. — P. 4.

Howard G., O’Leary D.H., Zaccaro D., Haffner S., Rewers M., Hamman R., Selby J.V., Saad M.F., Savage P., Bergman R. Insulin sensitivity and atherosclerosis: the Insulin Resistance Atherosclerosis (IRAS) Investigators // Circulation. — 1996. — Vol. 93. — P. 1809-1817.

Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group // Lancet. — 1998. — Vol. 352. — P. 837-853.

Kaplan K.M. The deadly quartet: upper-body obesity, glucose intolerance, hypertriglyceridemia and hypertension // Arch. Intern. Med. — 1989. — Vol. 149. — P. 1514-1520.

Kurtz T.W. Treating the metabolic syndrome: telmisartan as a peroxisome proliferator-activated receptor-gamma activator // Acta Diabetologica. — 2005. — Vol. 42. — S9-S16.

Kurtz T.W., Pravenec M. Antidiabetic mechanisms of ACE inhibitors and AII receptor antagonists: beyond the rennin-angiotensin system // Journal of Hypertension. — 2004. — Vol. 22. — P. 1-9.

Lacourciere Y., Lefebvre J., Poirier L. Treatment of ambulatory hypertensives with nebivolol or hydrochlorthiazide alone and in combination. A randomized, double-blind, placebo-controlled, factorial design trial // Am. J. Hypertens. — 1994. — Vol. 7. — P. 137-145.

Lawlor D.A., Smith G.D., Shah Ebrahim. Life course influences on insulin resistance (Findings from the British Women’s Heart and Health Study) // Diabetes Care. — 2003. — Vol. 26. — P. 97-103.

Lee E.T., Howard B.V., Savage P.J. et al. Diabetes and impaired glucose tolerance in three American Indian populations aged 45–74 years: the Strong Heart Study // Diabetes Care. — 1995. — Vol. 18. — P. 599-610.

Lee E.T., Welty T.K., Fabsitz R. et al. The Strong Heart Study: a study of cardiovascular disease in American Indians: design and methods // Am. Epidemiol. — 1990. — Vol. 132. — P. 1141-1155.

Liese A.D., Mayer-Davis E.J., Chambless L.E., Folsom A.R., Sharrett A.R., Bancoti F.L., Heiss G. Elevated fasting insulin predicts incident hypertension: the ARIC study: Atherosclerosis Risk in Communities Study Investigators // J. Hypertens. — 1999. — Vol. 17. — P. 1169-1177.

Mancia G., Bombelli M., Corrao G. et al. Metabolic Syndrome in the Pressioni Arteriose Monitorate E Loro Associazioni (PAMELA) Study // Hypertension. — 2007. — Vol. 49. — P. 40.

Mancia G., Facchetti R., Bombelli M. et al. Relationship of Office, Home, and Ambulatory Blood Pressure to Blood Glucose and Lipid Variables in the PAMELA Population // Hypertension. — 2005. — Vol. 45. — P. 1072.

Marin R., Ruilope L.M., Aljama P., Aranda P., Segura J., Diez J. A random comparison of fosinopril and nifedipine GITS in patients with primary renal disease // J. Hypertens. — 2001. — Vol. 19. — P. 1871-1876.

McNeely W., Goa K.L. Nebivolol in the management of essential hypertension: a review // Drugs. — 1999. — Vol. 57. — P. 633-651.

Michel M.C., Bohner H., Koster J. et al. Safety of telmisartan in patients with arterial hypertension: an open-label observational study // Drug. Safety. — 2004. — Vol. 27. — P. 335-344.

Miura Y., Yamamoto N., Tsunekawa S. et al. Replacement of valsartan and candesartan by telmisartan in hypertensive patients with type 2 diabetes: Metabolic and antiatherogenic consequences // Diabetes Care. — 2005. — Vol. 28. — P. 757-758.

National Institutes of Health: Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). — Washington, DC, US Govt. Printing Office, 2001 (NIH publ. no. 01-3670)

Pannacciullini N., De Pergola G., Ciccone M. et al. Effect of family history of type 2 diabetes on the intima-media thickness of the common carotid artery in normal-weight, over-weight, and obese glucose-tolerant yung adults // Diabetes Care. — 2003. — Vol. 26. — P. 1230-1234.

Pershadsingh H.A., Kurtz T.W. Insulin-sentizing effects of telmisartan: Implications for treatimg insulin-resistans hypertension and cardiovascular disease // Diabetes Care. — 2004. — Vol. 27. — P. 1015.

Poirier L., Cleroux J., Nadeau A. et al. Effects nebivolol and atenolol on insulin sensitivity and haemodynamics in hypertensive patients // J. Hypertens. — 2001. — Vol. 19. — P. 1429-1435.

Raji A., Seely E.W., Bekins S.A. et al. Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients // Diabetes Care. — 2003. — Vol. 26. — P. 172-178.

Reaven G. Metabolic Syndrome // Circulation. — 2002. — Vol. 106. — P. 286.

Reaven G.M., Hoffman B.B. A role for insulin in the aetiology and course of hypertension // Lancet. — 1987. — Vol. 2. — P. 435-437.

Reaven G.M., Lithell H., Landsberg L. Hypertension and associated metabolic abnormalities: the role of insulin resistance and the sympathoadrenal system // N. Engl. J. Med. — 1996. — Vol. 334. — P. 374-381.

Rippin J., Bain S.C., Barnett A.H. Rationale and design of diabetics exposed to telmisartan and enalapril (DETAIL) study // J. Diabetes Complications. — 2002. — Vol. 16. —

P. 195-200.

Rosano G.M., Vitale C., Castiglioni C. et al. Comparative effect of telmisartan and losartan on glucose metabolism in hypertensive patients with the metabolic syndrome // Circulation. — 2004. — Vol. 110. — Suppl. № 17. — P. 606. (abstr.2818).

Schupp M., Jance J., Clasen R. et al. Angiotensin type I receptor blockers induce proliferator-activated receptor-γ activity // Circulation. — 2004. — Vol. 109. — P. 2054-2057.

Stoschitzky K., Stoschitzky G., Brussee H., Bonelli C., Dobnig H. Comparing beta-blocking effects of bisoprolol, carvedilol and nebivolol // Cardiology. — 2006. — Vol. 106 — P. 199-206.

Stoschitzky K., Stoschitzky G., Brussee H. et al. Comparing beta blocking effects of bisoprolol, carvedilol and nebivolol // Cardiology. — 2006. — Vol. 106. — P. 199-206.

Tata P., Pahor M., Byington R.P. et al. Outcomes results of the Fosinipril versus Amlodipine Cardiovascular Event Trial (FACET) in patients with hypertension and NIDDM // Diabetes Care. — 1998. — Vol. 21. — P. 597-603

UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. // Br. Med. J. — 1998. — Vol. 317. — P. 713.

Unzueta Montoya A., Unzueta A.Jr., Ordonez Toquero G. et al. Comparative study between bisoprolol and metoprolol, combined with hydrochlorothiazide, as antihypertensive therapy // Arch. Inst. Cardiol. Mex. — 2000. — Vol. 70. — P. 589-595.

Van Nueten L., Taylor F.R., Robertson J.I. Nebivolol vs atenolol and placebo in essential hypertension: a double-blind randomized trial // J. Hum. Hypertens. — 1998. — Vol. 12. — P. 135-140.

van Zwieten P.A., Mancia G. The metabolic syndrome — a therapeutic challenge. — Amsterdam, the Netherlands, 2005. — P. 79.

Velliquette R.A., Ernsberger P. Contrasting metabolic effects of antihypertensive agents // J. Pharmacol. Exp. Ther. — 2003. — Vol. 307. — P. 1104-1111.

Vulpis V., Antonacci A., Prandi P., Bokor D., Pirrelli A. The effects of bisoprolol and atenolol on glucose metabolism in hypertensive patients with non-insulin-dependent diabetes mellitus // Minerva Med. — 1991. — Vol. 82. — P. 189-193.

Wang T.D., Chen W.J., Lin J.W. et al. Effects of risiglitazone on endothelial function, C-reactive protein, and components of the metabolic syndrome in nondiabetic patients with the metabolic syndrome // Am. J. Cardiol. — 2004. — Vol. 93. — P. 362-365.

Yusuf S. et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators // N. Engl. J. Med. — 2000. — Vol. 342. — P. 145-153.




DOI: https://doi.org/10.22141/2224-1485.6.56.2017.120321

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 HYPERTENSION

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 

© Publishing House Zaslavsky, 1997-2018

 

   Seo анализ сайта