Table salt and added free sugar as nutrient “targets” in preventive dietetics in essential hypertension and associated diseases (literature review)


  • D.К. Miloslavsky Government Institution “L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine
  • S.N. Koval Government Institution “L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine
  • I.A. Snegurska Government Institution “L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine
  • V.V. Bozhko Government Institution “L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine
  • L.A. Reznik Government Institution “L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine
  • Е.N. Schenyavska Government Institution “L.T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine”, Kharkiv, Ukraine, Ukraine



salt, sugar, essential hypertension, associated diseases, intestinal microbiota, guidelines, rational nutrition, modern diets, review


A review of foreign and native sources of literature from scientometric databases provides data on the harmful and beneficial properties of such well-known nutrients as table salt and sugar in essential hypertension and associated diseases, primarily in abdominal obesity and diabetes mellitus. The historical aspects of obtaining these nutrients, their participation in the pathogenesis of hypertension, the physiology of sodium and glucose metabolism are considered; the evidence base for prospective epidemiological studies is provided; the negative impact of these products on the intestinal microbiota, alarming statistics of salt and added free sugar abuse in population of different countries, social, economic and medical aspects of excess salt and sugar as risk factors for chronic non-communicable diseases emergence and progression of arterial hypertension are noted. The methods for assessing their amount in food, approaches to inhibiting salt and sugar-rich food abuse are given; the attention on the materials of the WHO, European, American, and Ukrainian guidelines on the safe amount of both nutrients is focused. The paper gives advice on rational nutrition of patients and options for modern diets, first of all, a low-salt DASH diet (Dietary Approaches to Stop Hypertension) from the standpoint of salt and sugar limiting.


Shi A., Tao Z., Wei P., Zhao J. Epidemiological aspects of heart diseases. Exp Ther Med. 2016. Vol. 12(3). P.1645-1650.

Bhat S., Marklund M., Henry M.E. et al. A Systematic Review of the Sources of Dietary Salt Around the World. Adv Nutr. 2020. pii: nmz134. doi: 10.1093/advances/nmz134.

Agócs R., Sugár D., Szabó A.J. Is too much salt harmful? Yes. Pediatr Nephrol. 2020. Vol. 35(9). P.1777-1785. doi: 10.1007/s00467-019-04387-4.

Voloshyna I.M., Kryvenko V.I., Dejnega V.G. Salt and hypertension: to take impossible to refuse? Arterialʹnaâ gipertenziâ, 2016. 5(49), P.47–52. doi: 10.22141/2224-1485.5.49.2016.83864. (in Ukrainian).

Komnenov D., Levanovich P.E., Rossi N.F. Hypertension Associated with Fructose and High Salt: Renal and Sympathetic Mechanisms. Nutrients. 2019 Mar 7. Vol. 11(3). P.569. doi: 10.3390/nu11030569.PMID: 30866441 Free PMC article.

Lava S.A., Bianchetti M.G., Simonetti G.D. Salt intake in children and its consequences on blood pressure. Pediatr Nephrol. 2015. Vol. 30(9). P.1389-96. doi: 10.1007/s00467-014-2931-3.

Garg R., Sun B., Williams J. Effect of low salt diet on insulin resistance in salt-sensitive versus salt-resistant hypertension. Hypertension. 2014. Vol. 64(6). P.1384-7. doi: 10.1161/HYPERTENSIONAHA.114.03880.

Awadalla H., Elmak N.E., El-Sayed E.F., Almobarak AO et al. Hypertension in Sudanese individuals and associated risk factors: the critical intersection between salt and sugar intake. Cardiovasc Diagn Ther. 2018. Vol. 8(4). P.432-438. doi: 10.21037/cdt.2018.04.05.

Iaccarino Idelson P., D'Elia L., Cairella G. et al. On Behalf Of The Sinu-Gircsi Working Group. Salt and Health: Survey on Knowledge and Salt Intake Related Behaviour in Italy. Nutrients. 2020. Vol. 12(2). P. E279. doi: 10.3390/nu12020279.

Faulkner J.L., Belin de Chantemèle E.J. Female Sex, a Major Risk Factor for Salt-Sensitive Hypertension. Curr Hypertens Rep. 2020 Oct 21. Vol. 22(12). P.99. doi: 10.1007/s11906-020-01113-6.PMID: 33089375 Free PMC article. Review.

Ferraris C., Turner A., Kaur K. e al. Salt Taste Genotype, Dietary Habits and Biomarkers of Health: No Associations in an Elderly Cohort. Nutrients. 2020. Vol. 12(4). pii: E1056. doi: 10.3390/nu12041056.

Martinelli J., Conde S.R., Araújo A.R., Marcadenti A. Association between salt taste sensitivity threshold and blood pressure in healthy individuals: a cross-sectional study. Sao Paulo Med J. 2020. Vol. 138(1). P. 4-10. doi: 10.1590/1516-3180.2019.0166.R1.02102019.

Liu Q., Ayoub-Charette S., Khan T.A. et al. Important Food Sources of Fructose-Containing Sugars and Incident Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. J Am Heart Assoc. 2019. Vol. 8(24). P. e010977. doi: 10.1161/JAHA.118.010977.

Kell K.P., Cardel M.I., Bohan Brown M.M., Fernández J.R. Added sugars in the diet are positively associated with diastolic blood pressure and triglycerides in children. Am J Clin Nutr. 2014. Vol. 100(1). P. 46-52. doi: 10.3945/ajcn.113.076505.

Cappuccio F.P., Beer M., Strazzullo P. Population dietary salt reduction and the risk of cardiovascular disease. A scientific statement from the European Salt Action Network.European Salt Action Network. Nutr Metab Cardiovasc Dis. 2018 Dec 7; Vol. 29(2). P.107-114. doi: 10.1016/j.numecd.2018.11.010.PMID: 30583888

DiNicolantonio J.J., Lucan S.C. The wrong white crystals: not salt but sugar as aetiological in hypertension and cardiometabolic disease. Open Heart. 2014. Vol. 1(1). P. e000167. doi: 10.1136/openhrt-2014-000167.

DiNicolantonio J.J., O'Keefe J.H. Hypertension Due to Toxic White Crystals in the Diet: Should We Blame Salt or Sugar? Prog Cardiovasc Dis. 2016. Vol. 59(3). P.219-225. doi: 10.1016/j.pcad.2016.07.004.

Stolarz-Skrzypek K., Bednarski A., Kawecka-Jaszcz K. et al. Will Sodium Intake Reduction Improve Cardiovascular Outcomes in the General Population? A Critical Review of Current Evidence. Curr Hypertens Rev. 2015. Vol. 11(1). P.22-9. doi: 10.2174/1573402111666150530205428.

Ares G.R., Ortiz P.A. Direct renal effects of a fructose-enriched diet: interaction with high salt intake. Am J Physiol Regul Integr Comp Physiol. 2015. Vol. 309(9). P. R1078-81. doi: 10.1152/ajpregu.00156.2015.

Dupas J., Feray A., Goanvec C. et al. Metabolic Syndrome and Hypertension Resulting from Fructose Enriched Diet in Wistar Rats. Biomed Res Int. 2017. Vol. 2017. 2494067. doi: 10.1155/2017/2494067.

Arora N.K., Pillai R., Dasgupta R., Garg P.R. Whole-of-society monitoring framework for sugar, salt, and fat consumption and noncommunicable diseases in India. Ann N Y Acad Sci. 2014. Vol. 1331. P. 157-173. doi: 10.1111/nyas.12555.

He F.J., Li J., Macgregor G.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. Brit. Med. J. 2013. Vol. 346. P. f1325. doi: 10.1136/bmj.f1325.

Kloss L., Meyer J.D., Graeve L., Vetter W. Sodium intake and its reduction by food reformulation in the European Union — A review. Nutrition & Food Science Journal (NFS Journal). 2015. Vol. 1. P. 9-19. doi: 10.1016/j.nfs.2015.03.001.

WHO: Global Action Plan for the Prevention and Control of NCDs 2013-2020. URL:

American Heart Association. Added Sugars. URL:

Silva S.M., Facchini L.A., Tomasi E. et al. Advice for salt, sugar and fat intake habits among adults: a national-based study. Rev Bras Epidemiol. 2013. Vol. 16(4). P.995-1004. doi:10.1590/S1415-790X2013000400019.

Sirenko Yu.M., Shvecz` O.V., Voloshy`na I.M. Recommendations of the Ukrainian Association of Cardiologists and Dietologists on a low-salt diet. Arterialʹnaâ gipertenziâ,2017. № 5. P.73-75. (in Ukrainian).

Preuss H.G., Clouatre D., Swaroop A. et al. Blood Pressure Regulation: Reviewing Evidence for Interplay Between Common Dietary Sugars and Table Salt. J Am Coll Nutr. 2017. Vol. 36(8). P. 677-684. doi: 10.1080/07315724.2017.1345338.

Stolarz-Skrzypek K. Sugar and salt in the pathogenesis of elevated blood pressure. Hypertension. 2011. Vol. 57(4). P. 676-8. doi: 10.1161/HYPERTENSIONAHA.110.167429.

Genovesi S., Giussani M., Orlando A. et al. Salt and Sugar: Two Enemies of Healthy Blood Pressure in Children. Nutrients. 2021 Feb 22; Vol. 13(2). P.697. doi: 10.3390/nu13020697.PMID: 33671538 Free PMC article. Review.

Mansoori S., Kushner N., Suminski R.R. et al. Added Sugar Intake is Associated with Blood Pressure in Older Females. Nutrients. 2019. Vol. 11(9). pii. E2060. doi: 10.3390/nu11092060.

D'Elia L., La Fata E., Giaquinto A. et al. Effect of dietary salt restriction on central blood pressure: A systematic review and meta-analysis of the intervention studies. J Clin Hypertens (Greenwich). 2020. doi: 10.1111/jch.13852.

Nilson E.A.F., da Silva E.N., Jaime P.C. Developing and applying a costing tool for hypertension and related cardiovascular disease: Attributable costs to salt/sodium consumption. J Clin Hypertens (Greenwich). 2020. Vol. 22(4). P. 642-648. doi: 10.1111/jch.13836.

He F.J., Tan M., Ma Y., MacGregor G.A. Salt Reduction to Prevent Hypertension and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020. Vol. 75(6). P. 632-647. doi: 10.1016/j.jacc.2019.11.055.

Anari R., Amani R., Veissi M. Sugary beverages are associated with cardiovascular risk factors in diabetic patients. J Diabetes Metab Disord. 2019. Vol. 18(1). P. 7-13. doi: 10.1007/s40200-019-00383-5.

Caliceti C., Calabria D., Roda A., Cicero A.F.G. Fructose Intake, Serum Uric Acid, and Cardiometabolic Disorders: A Critical Review Affiliations expand Nutrients .2017 Apr 18. Vol. 9(4). P.395. doi: 10.3390/nu9040395 PMID: 28420204

Johnson R.J., Nakagawa T., Sanchez-Lozada L.G. et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes. 2013. Vol. 62(10). P. 3307-15. doi: 10.2337/db12-1814. 35

Johnson R.J., Sánchez-Lozada L.G., Andrews P., Lanaspa M.A. Perspective: A Historical and Scientific Perspective of Sugar and Its Relation with Obesity and Diabetes. Adv Nutr. 2017. Vol. 8(3). P. 412-422. doi: 10.3945/an.116.014654.

Fatula M.I, Mashura G.Yu. Hypertension and sodium chloride. Naukovyj visnyk Uzhgorodskogo universytetu, seriya «Medycyna» 2015. № І (51). P.259-264. (in Ukrainian).

That Sugar Film. From Wikipedia, the free encyclopedia.

Green A.K., Jacques P.F., Rogers G. et al. Sugar-sweetened beverages and prevalence of the metabolically abnormal phenotype in the Framingham Heart Study. Obesity (Silver Spring). 2014. Vol. 22(5). P. E157-63. doi: 10.1002/oby.20724.

Brown I.J., Stamler J., Van Horn L. et al.; International Study of Macro/Micronutrients and Blood Pressure Research Group. Sugar-sweetened beverage, sugar intake of individuals, and their blood pressure: International Study Of Macro/Micronutrients And Blood Pressure. Hypertension. 2011. Vol. 57(4). P. 695-701. doi: 10.1161/HYPERTENSIONAHA.110.165456.

Barrio-Lopez M.T., Martinez-Gonzalez M.A., Fernandez-Montero A. et al. Prospective study of changes in sugar-sweetened beverage consumption and the incidence of the metabolic syndrome and its components: the SUN cohort. Br J Nutr. 2013. Vol. 110(9). P. 1722-31. doi: 10.1017/S0007114513000822.

Chen L., Appel L.J., Loria C. et al. Reduction in consumption of sugar-sweetened beverages is associated with weight loss: the PREMIER trial. Am J Clin Nutr. 2009. Vol. 89(5). P. 1299-306. doi: 10.3945/ajcn.2008.27240.

Zhou L., Feng Y., Yang Y. et al. Diet behaviours and hypertension in US adults: the National Health and Nutrition Examination Survey (NHANES) 2013-2014. J. Hypertens. 2019. Vol. 37(6). P. 1230-1238. doi: 10.1097/HJH.0000000000002037.

Vartiainen E. The North Karelia Project: Cardiovascular disease prevention in Finland. Glob Cardiol Sci Pract. 2018 Jun 30. Vol. 2018(2). P.13. Published online 2018 Jun 30. doi: 10.21542/gcsp.2018.13

Walker M.E., O'Donnell A.A., Himali J.J. et al. Associations of the Mediterranean-DASH Intervention for Neurodegenerative Delay Diet with cardiac remodeling in the community: The Framingham Heart Study. Br J Nutr. 2021 Feb 23. P.1-28. doi: 10.1017/S0007114521000660. Online ahead of print.PMID: 33618785

Vandevijvere S., Ruttens A., Wilmet A. et al. Urinary sodium and iodine concentrations among Belgian adults: results from the first National Health Examination Survey. J.Eur J Clin Nutr. 2020 Oct 8. doi: 10.1038/s41430-020-00766-5. Online ahead of print.PMID: 33033379

Aljuraiban G., Chan Q., Gibson R. et al. Association between plant-based diets and blood pressure in the INTERMAP study. INTERMAP Research Group. BMJ Nutr Prev Health. 2020 Jul 8; Vol. 3(2). P.133-142. doi: 10.1136/bmjnph-2020-000077. eCollection 2020 Dec.PMID: 33521522

Derkach A., Sampson J., Joseph J. et al. Effects of dietary sodium on metabolites: the Dietary Approaches to Stop Hypertension (DASH)–Sodium Feeding Study. Am J Clin Nutr. 2017. Vol. 106(4). P. 1131–1141. doi: 10.3945/ajcn.116.150136.

Malhotra A., Sahdev N., Sharma S. Diet and Nutrition after the PURE study. European Heart Journal. 2018. Vol. 39 (17). P. 1503–1504. doi:10.1093/eurheartj/ehy178.

Khitan ZJ, Kheetan MM, Shapiro JI. PURE is not so pure when it comes to dietary sodium and cardiovascular events! J Clin Hypertens (Greenwich). 2018 May; Vol. 20(5). P.976-977. doi: 10.1111/jch.13267. Epub 2018 Mar 30.PMID: 29603554 Free article. No abstract available.

Kucharska A., Jaworski M., Panczyk M. et al. The Effectiveness of Dietary Approaches to Stop Hypertension Diet Intervention in Persons with Arterial Hypertension and Obesity: A Key Role of the Patients' Personality Profile. Ann Nutr Metab. 2018. Vol. 72(2). P. 104-111. doi: 10.1159/000486520.

Lima S.T., da Silva Nalin de Souza B., França A.K. et al. Dietary approach to hypertension based on low glycaemic index and principles of DASH (Dietary Approaches to Stop Hypertension): a randomised trial in a primary care service. Br. J. Nutr. 2013. Vol. 110(8). P. 1472-1479.

Risk factors for noncommunicable diseases in Ukraine in 2019: Summary of results from the WHO STEPS survey and comparison with selected countries. Copenhagen, 2019. 14 p. (in Ukrainian). Access mode:; 2.

Noncommunicable diseases and their risk factors. STEP wise approach to surveillance (STEPS).

He F.J., Tan M., Song J., MacGregor G.A. Salt substitution to lower population blood pressure. Nat Med. 2020. Vol. 26(3). P. 313-314. doi: 10.1038/s41591-020-0784-9.

Ma Y., He F.J., MacGregor G.A. High salt intake: independent risk factor for obesity? Hypertension. 2015. Vol. 66(4). P. 843-9. doi: 10.1161/HYPERTENSIONAHA.115.05948.

Preventive cardiology: implementation of international recommendations in Ukraine./ Kovalenko V.M., Nesukai O.G., Dovzhenko M.M., Gorbas I.M. - K .: MORION. 2015. 104 p (in Ukrainian).

Fadieienko G.D., Isayeva G.S., Halchinska V.Yu., Bondar Т.M.Personalized approaches to the primary prevention of cardiovascular diseases.Ukrainskyi terapevtychnyi zhurnal. 2019. № 2. S.14-24 (in Ukrainian)

Fadieienko G.D., Kolesnikova O.V. Basic strategies for prevention of non-communicable diseases in Ukraine. Ratsionalna farmakoterapiia. 2017. №2. P.5-10. (in Ukrainian).

Wick J.Y. Salt: important element, invisible menace. Consult Pharm. 2012 Nov; Vol. 27(11). P.756-62. doi: 10.4140/TCP.n.2012.756.

van der Leeuw J., de Borst M.H., Kieneker L.M. et al. Separating the effects of 24-hour urinary chloride and sodium excretion on blood pressure and risk of hypertension: Results from PREVEND. PLoS One. 2020 Feb 5. Vol. 15(2). P.e0228490. doi: 10.1371/journal.pone.0228490.

Wilck N., Matus M.G., Kearney S.M. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017. Vol. 551(7682). P. 585-589. doi: 10.1038/nature24628.

Jama H.A., Marques F.Z. Don't Take It With a Pinch of Salt: How Sodium Increases Blood Pressure via the Gut Microbiota. Circ Res. 2020. Vol. 126(7). P. 854-856. doi: 10.1161/CIRCRESAHA.120.316816.

Ramos-Romero S., Hereu M., Atienza L. et al. Mechanistically different effects of fat and sugar on insulin resistance, hypertension, and gut microbiota in rats. Am J Physiol Endocrinol Metab. 2018. Vol. 314(6). P. E552-E563. doi: 10.1152/ajpendo.00323.2017.

Allison S.J. Hypertension: Salt the microbiome immune function and hypertension. Nat Rev Nephrol. 2018. Vol. 14(2). P. 71. doi: 10.1038/nrneph.2017.166.

Naqvi S., Asar T.O., Kumar V. et al. cross-talk between gut microbiome, salt and hypertension. Biomed Pharmacother. 2021 Feb. Vol. 134. P.111156. doi: 10.1016/j.biopha.2020.111156. Epub 2021 Jan 2.PMID: 33401080 Review.

Kolesnikova O.V. The intestinal microbiota and metabolic syndrome: the unifying factors.Suchasna hastroenterolohiia.2016. №2. S.61-70. Access mode: (in Ukrainian).

Taylor R.S., Ashton K.E., Moxham T. et al. Reduced dietary salt for the prevention of cardiovascular disease: a meta-analysis of randomized controlled trials (Cochrane review). Am J Hypertens. 2011. Vol. 24(8). P. 843-53. doi: 10.1038/ajh.2011.115.

World Health Organization Collaborating Centre for Population Salt Reduction (WHO CC SALT). URL:

World Health Organization. Sodium intake for adults and children. URL:

World Health Organization. SHAKE the salt habit - Technical package for salt reduction. URL:

World Health Organization. Salt reduction and iodine fortification strategies in public health. Report of a Joint Technical Meeting. URL:

Farmaki A.E., Rayner N.W., Kafyra M. et al. A Dietary Pattern with High Sugar Content Is Associated with Cardiometabolic Risk Factors in the Pomak Population. Nutrients. 2019. Vol. 11(12). pii: E3043. doi: 10.3390/nu11123043.

Wölnerhanssen B.K., Meyer-Gerspach A.C. [Health effects of sugar consumption and possible alternatives]. Ther Umsch. 2019. Vol. 76(3). P. 111-116. doi: 10.1024/0040-5930/a001070. Article in German

Ho Do M., Seo Y.S., Park H.Y. Polysaccharides: bowel health and gut microbiota. Crit Rev Food Sci Nutr. 2020. doi: 10.1080/10408398.2020.1755949.

Kell K.P., Judd S.E., Pearson K.E. et al. Associations between socio-economic status and dietary patterns in US black and white adults. Br J Nutr. 2015. Vol. 113(11). P. 1792-9. doi: 10.1017/S0007114515000938.

Kearney F.M., Fagan X.J., Al-Qureshi S. Review of the role of refined dietary sugars (fructose and glucose) in the genesis of retinal disease. Clin Exp Ophthalmol. 2014. Vol. 42(6). P. 564-73. doi: 10.1111/ceo.12290.

Macdonald I A. A review of recent evidence relating to sugars, insulin resistance and diabetes Eur J Nutr. 2016 Nov. Vol. 55(Suppl 2). P.17-23. doi: 10.1007/s00394-016-1340-8.

Kokubo Y., Higashiyama A., Watanabe M., Miyamoto Y. A comprehensive policy for reducing sugar beverages for healthy life extension. Environ Health Prev Med. 2019. Vol. 24(1). P. 13. doi: 10.1186/s12199-019-0767-y.

Reducing consumption of sugar-sweetened beverages to reduce the risk of childhood overweight and obesity. URL:

Cheungpasitporn W., Thongprayoon C., Edmonds P.J. et al. Sugar and artificially sweetened soda consumption linked to hypertension: a systematic review and meta-analysis. Clin Exp Hypertens. 2015. Vol. 37(7). P. 587-93. doi: 10.3109/10641963.2015.1026044.

Warshaw H., Edelman S.V. Practical Strategies to Help Reduce Added Sugars Consumption to Support Glycemic and Weight Management Goals. Clin Diabetes. 2021 Jan. Vol. 39(1). P.45-56. doi: 10.2337/cd20-0034.PMID: 33551553

Kim Y., Je Y. Prospective association of sugar-sweetened and artificially sweetened beverage intake with risk of hypertension. Arch Cardiovasc Dis. 2016. Vol. 109(4). P. 242-53. doi: 10.1016/j.acvd.2015.10.005.

Xi B., Huang Y., Reilly K.H. et al. Sugar-sweetened beverages and risk of hypertension and CVD: a dose-response meta-analysis. Br J Nutr. 2015. Vol. 113(5). P.709-17. doi: 10.1017/S0007114514004383.

Siervo M., Montagnese C., Mathers J.C. et al. Sugar consumption and global prevalence of obesity and hypertension: an ecological analysis. Public Health Nutr. 2014. Vol. 17(3). P. 587-96. doi: 10.1017/S1368980013000141.

Ruanpeng D., Thongprayoon C., Cheungpasitporn W., Harindhanavudhi T. Sugar and artificially sweetened beverages linked to obesity: a systematic review and meta-analysis. QJM. 2017. Vol. 110(8). P. 513-520. doi: 10.1093/qjmed/hcx068.

Karalius V.P., Shoham D.A. Dietary sugar and artificial sweetener intake and chronic kidney disease: a review. Adv Chronic Kidney Dis. 2013. Vol. 20(2). P.157-64. doi: 10.1053/j.ackd.2012.12.005.

Di Rienzi S.C., Britton R.A. Adaptation of the Gut Microbiota to Modern Dietary Sugars and Sweeteners. Adv Nutr. 2020. Vol. 11(3). P. 616–629. doi: 10.1093/advances/nmz118.

Barna O.M., Korost Ya.V. Research VESNA (The surVEy of dietary habits, hydration behavior, risk factors and Status of health through UkraiNiAn population): self-assessment of health status of Ukraine.Liky Ukrainy. 2015. № 9-10. S. 39-43. (in Ukrainian).Access mode::

WHO. Sugars intake for adults and children. Guideline. 2015. URL:

World Health Organization lowers sugar intake recommendations. URL:

2018 ESC/ESH Guidelines for the Management of Arterial Hypertension. Eur. Heart J. 2018. Vol. 39 (33). Р. 3021-3104. doi: 10.1093/eurheartj/ehy339.

Arnett D.K., Blumenthal R.S., Albert M.A. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019. Sep 10. Vol. 140(11). P.e596-e646. PMCID: PMC7734661DOI: 10.1161/CIR.0000000000000678

Garvey W.T., Mechanick J.I., Brett E.M. et al. Reviewers of the AACE/ACE Obesity Clinical Practice Guidelines. American Association Of Clinical Endocrinologists And Аmerican College Of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract. 2016. Vol. 22, Suppl 3. P.1-203. doi: 10.4158/EP161365.GL.

American Diabetes Association. Standards of Medical Care in Diabetes 2020, abridged for primary care providers. Clinical Diabetes. 2020. Vol. 38 (1). P.10-38. doi:10.2337/cd20-as01.

Jayalath V.H., de Souza R.J., Ha V. et al. Sugar-sweetened beverage consumption and incident hypertension: a systematic review and meta-analysis of prospective cohorts. Am J Clin Nutr. 2015. Vol. 102(4). P. 914-21. doi: 10.3945/ajcn.115.107243.

Keller A., Heitmann B.L., Olsen N. Sugar-sweetened beverages, vascular risk factors and events: a systematic literature review. Public Health Nutr. 2015. Vol. 18(7). P. 1145-54. doi: 10.1017/S1368980014002122.

Fowler S.P.G. Low-calorie sweetener use and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans. Physiol Behav. 2016. Vol. 164(Pt B). P. 517-523. doi: 10.1016/j.physbeh.2016.04.047.

Hauner H., Bechthold A., Boeing H. et al. [Carbohydrate intake and prevention of nutrition-related diseases]. Dtsch Med Wochenschr. 2012. Vol. 137(8). P. 389-93. doi: 10.1055/s-0031-1298916. German.

Homma T., Homma M., Huang Y. et al. Combined Salt and Caloric Restrictions: Potential Adverse Outcomes. J Am Heart Assoc. 2017. Vol. 6(10). pii: e005374. doi: 10.1161/JAHA.116.005374.

Zhang L., Pagoto S., May C. et al. Effect of AHA dietary counselling on added sugar intake among participants with metabolic syndrome. Eur J Nutr. 2018 Apr. Vol. 57(3). P.1073-1082. doi: 10.1007/s00394-017-1390-6. Epub 2017 Mar 28.PMID: 28353070

Practical Guidance for Food Consumption to Prevent Cardiovascular Disease. Nestel P.J., Beilin L.J., Clifton P.M., Watts G.F., Mori T.A. Heart Lung Circ. 2021 Feb. Vol. 30(2). P.163-179. doi: 10.1016/j.hlc.2020.08.022. Epub 2020 Nov 3.PMID: 33158734

Tsilas C.S., de Souza R.J., Mejia S.B. et al. Relation of total sugars, fructose and sucrose with incident type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. CMAJ. 2017 May 23. Vol. 189(20) P.E711-E720. doi: 10.1503/cmaj.160706.PMID: 28536126

Malik A.H., Akram Y., Shetty S. et al. Impact of sugar-sweetened beverages on blood pressure. Am J Cardiol. 2014. Vol. 113(9). P. 1574-80. doi: 10.1016/j.amjcard.2014.01.437.

Mansouri M., Sharifi F., Yaghubi H. et al. Sugar-sweetened beverages consumption in relation to hypertension among Iranian university students: the MEPHASOUS study. Eat Weight Disord. 2020. Vol. 25(4). P. 973-982. doi: 10.1007/s40519-019-00713-9.

Mirmiran P., Yuzbashian E., Asghari G. et al. Consumption of sugar sweetened beverage is associated with incidence of metabolic syndrome in Tehranian children and adolescents. Nutr Metab (Lond). 2015. Vol. 12. P. 25. doi: 10.1186/s12986-015-0021-6.

Cicero A.F.G., Fogacci F., Desideri G. et al. Arterial Stiffness, Sugar-Sweetened Beverages and Fruits Intake in a Rural Population Sample: Data from the Brisighella Heart Study. Nutrients. 2019. Vol. 11(11). pii: E2674. doi: 10.3390/nu11112674.

Park S., Lundeen E.A., Pan L., Blanck H.M. Impact of Knowledge of Health Conditions on Sugar-Sweetened Beverage Intake Varies Among US Adults. Am J Health Promot. 2018. Vol. 32(6). P. 1402-1408. doi: 10.1177/0890117117717381.

Stevens A., Hamel C., Singh K. et al. Do sugar-sweetened beverages cause adverse health outcomes in children? A systematic review protocol. Syst Rev. 2014. Vol. 3. P. 96. doi: 10.1186/2046-4053-3-96.

Welsh J.A., Lundeen E.A., Stein A.D. The sugar-sweetened beverage wars: public health and the role of the beverage industry. Curr Opin Endocrinol Diabetes Obes. 2013. Vol. 20(5). P. 401-6. doi: 10.1097/

Sahned J., Mohammed Saeed D., Misra S. Sugar-free Workplace: A Step for Fighting Obesity. Cureus. 2019. Vol. 11(12). P. e6336. doi: 10.7759/cureus.6336.

Acton R.B., Hammond D. Impact of sugar taxes and front-of-package nutrition labels on purchases of protein, calcium and fibre. Prev Med. 2020. Vol. 136. P.106091. doi: 10.1016/j.ypmed.2020.106091.

Yusta-Boyo M.J., Bermejo L.M., García-Solano M. et al. Sugar Content in Processed Foods in Spain and a Comparison of Mandatory Nutrition Labelling and Laboratory Values. Nutrients. 2020. Vol. 12(4). pii: E1078. doi: 10.3390/nu12041078.

Ge L., Sadeghirad B., Ball G.D.C. et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials. BMJ. 2020. Vol. 369. P. m696. doi: 10.1136/bmj.m696.

Takahara M., Shimomura I. Metabolic syndrome and lifestyle modification. Rev Endocr Metab Disord. 2014. Vol. 15(4). P. 317-27. doi: 10.1007/s11154-014-9294-8.

Wadden T.A., Webb V.L., Moran C.H., Bailer B.A. Lifestyle Modification for Obesity New Developments in Diet, Physical Activity, and Behavior Therapy. Circulation. 2012. Vol. 125(9). P.1157–70. doi: 10.1161/CIRCULATIONAHA.111.039453.

Koval S.M., Snihurska I.O., Vysotska O. et al. Prognosis of essential hypertension progression in patients with abdominal obesity. In book: Information Technology in Medical Diagnostics II, Wójcik, Pavlov& Kalimoldayev (Eds). Taylor&Francis Group, London. 2019. P. 275-288. doi: 10.1201/9780429057618-32

Myloslavskyi DK. Modern views on the role and place of therapeutic and prophylactic dietetics in the internal organs diseases.Ukrainskyi terapevtychnyi zhurnal. 2016. №3. S.83-92. (in Ukrainian).Access mode: